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TECHNICAL MEMORANDUM

PROGRAM RISK ANALYSIS HANDBOOK

I. INTRODUCTION AND OBJECTIVES

The article "GRO Project Beset by Complications" appeared in the June 14, 1987,

Huntsville Times. The NASA-GSFC Project Manager, Jeremiah Madden, stated "the sheer magni-

tude and complexity of the GRO program overwhelmed managers and engineers and obscured some

of the program's finer details." These complications occur on all space and defense projects,

especially those that use unproven technology, attempt a new mission, and/or scale up (or down)

the size of the craft used -- for example, the C-5A, the Trident Submarine, the Space Telescope,

and the Stealth Bomber. The specific problems encountered on the GRO project are typical:

• Manufacturing processes not well-understood.

• Manufacturing problems due to materials faults/availability.

• Lack of trained manufacturing work force.

• Unexpected electromechanical interference between instruments, once integrated.

• Redesign of components and tooling.

These problems led to a modest cost growth of $380 million to $500 million, and a schedule slip

from May 1988 to early 1990. Space Telescope cost growth is $500 million to $1.4 billion. The

average cost growth observed in both NASA and DoD projects, from the start of Full-Scale

Development (FSD) to the completion of prototype production, has been in the range 30 to 40

percent.

This type of track-record for Federal acquisition of large-scale systems has led to

_ngressional skepticism, public outrage, and occasionally loss of support for the continuation of

_he project. Since the 1960s, DoD and NASA project managers have sought out management tech-

niques that will help them control cost growth and schedule slippages. Major General John R.

Guthrie stated at the 1970 DoD Project Manager's Conference that:

"The most rudimentary sort of good risk analysis might have enabled us to avoid

most of the pitfalls we have encountered. By rudimentary I mean -- did we identify

those items which were new and identify the impact on overall system performance

if that particular component or subsystem were to experience difficulty?"

Program risk analysis is an iterative process (Fig. 1) for identifying, quantifying, and

managing the uncertainties associated with complex design and development programs typical to
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Figure 1. Risk analysis iterative process.

NASA. Others have defined risk analysis as a systems analysis approach to risk, or as a collection

of techniques to identify, quantify, and manage risk. In contrast to techniques for quantifying

operational risk (e.g., failure modes and effects analysis, fault tree analysis, reliability analysis),

program risk analysis deals with program cost, schedule, and technical performance estimates. The

key question to be answered by risk analysis is what are the distributions of probability on the

mature (achieved) values of each of these three random variables. In some risk analyses, two of

these variables (say, performance and schedule) are thought of as fixed. Then the probability dis-

tribution on the mature value of the other (cost) is derived. However, in a comprehensive risk

analysis, the dependence among these variables is assessed and uncertainty in one affects the

assessment of risk in the other two.

NASA NMI 7100.14A (Major System Acquisition) calls out risk evaluation as a criteria

second only to performance for initiating FSD. MMI 7110.1 requires risk analysis and cost risk

assessment for both formal project predevelopment reviews. Program risk analysis is useful to

program managers as both a source of information on the program and as a decision-aiding tool.

The reason is that it is a formal, systematic, and documented approach to dealing with uncertainty,

versus "seat-of-the-pants" dealing with problems as they arise. It can be used in both Phases A and

B, as requirements and design configurations evolve, for the purpose of early identification and

resolution of technical uncertainties. Classic risk resolution strategies are parallel development,

design/operations trade-offs, and development of back-up solutions. It is probably of most use for

assessing the potential for cost and schedule slippages in programs moving into Phase C/D, because

this is the point at which significant resource commitments will be made. Risk analysis can be app-

lied to subsystems or' instruments, individual technologies, manufacturing processes, and other el-

ements that make up a program; however, its true value is in synthesizing the multiple uncertainties

which arise when new missions are planned, and technologies must be integrated into a new en-

gineering design.
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Each task team leaderand programmanager(PM) at NASA/MSFC shouldbecomeawareof
the valuable information availablefrom a programrisk analysis.The risk analysisprocessis itera-
tive and risk analysisshouldnot be viewedasa one-time,check-the-boxtype activity. This
handbookis written with the view of the PM asthe consumerfor risk analysis,and a rangeof
options is provided so that the appropriatetype of analysis,at the right level of detail, may be
requested.

This handbookis preparedas a guide andreferencesourcefor any NASA employeewho is
requestedto perform a risk analysisin supportof the PM. This individual will be referredto as
"the risk analyst," althoughhe/shemay be a cost analyst,schedule°analyst,programanalyst,
engineer,or scientist.An entire rangeof risk analysistools will be provided,alongwith some
guidancefor selectingthe appropriatetechniquefor a given _tuation. However, it is alwaysneces-
sary that the risk analystapply his judgmentwhen initiating a risk analysisat the requestof a PM.
For example,he must decidewhat techniqueis appropriate,given the time availableand the
softwaretools he hasat his disposal.Another key questionis how muchaccessto and cooperation
from programpersonnelthe analystcanexpect;no meaningfulrisk analysiscanbe generating
without repeatedprobing discussionswith practicallyall programpersonnelin order to identify
technicaluncertaintiesand their potential cost and scheduleimpacts.Good relationsbetweenrisk
analyst and technicalteammembersis essentialif a valid, usefulrisk analysisis to be conducted.
The only alternative,and one that works well, is for the risk analystto be part of an ad-hocteam
of experts, independentof the project, whosejob it is to review the project and report to higher
authority on its findings.

The selectionand supportof a risk analyst(or risk analysisgroup) is an importantstepfor
large industry/governmentdesignorganizationsand laboratories.The risk analystis the alter-egoof
top managementin his evaluationof a project, muchas the quality assuranceanalystis for a
production facility. He is often feared,avoided,circumvented,and detoured.Other engineers
generallyview the risk analystasa nuisancewho will take their valuabletime, producenothing
new, and perhapsmisrepresenttheir professionaljudgment. Although it is desirablefor the risk
analystto be involved early in programs,and havean establishedrelationshipwith both PM and
project personnel,the fact is that risk analysisis usually a last-minuteeffort, performedon an
ad-hocbasis, prior to somemajor decision/presentation.The risk analystis often not at all familiar
with the technologyor programbeinganalyzed.He musttherefore:

1. Educatehimself quickly.

2. Acquire the data.

3. Use the data in somepre-developedmodel.

4. Presentrecommendationsbasedon modeloutput.

The abovediscussionclearly revealsthat conductinga risk analysisis not an easyjob. The
risk analystmust be an individual of highestquality in education,technical/programexperience,
humanrelations,and recognitionof managementneeds.Many of thesepositionsare filled by
individuals with graduate-leveltraining in statistics,operationsresearch,or systemsanalysis.An
undergraduatedegreein engineeringor hard scienceshelps, but is not necessary.Individualswho



areenthralledwith mathmodelsand/orcomputertechniquesgenerallyarenot goodrisk analysts.
The interactionwith project personnel,the collection andverification of data,and preparationof
finding into a format useful for managementare the key activities of the risk analyst.

II. TERMINOLOGY

Several general references on program risk analysis are given in the Bibliography. The

definitions presented in the following are stated in broad terms and would be accepted by anyone

working in the program risk analysis area. Of course, certain organizations and programs within

organizations adopt more specific definitions for terms such as "risk area" -- in fact one of the

first jobs for a risk analyst newly assigned to a program is to work with the PM on an agreeable

set of definitions and working groundrules. Note also that more specialized terminology is used in

health and environmental risk analysis, and these terms are not appropriate for program risk

analysis.

Definitions

Risk -- The probability of undersirable future consequences of actions (inaction) taken

today. Thus, risk has a temporal element, and is a function of both probability and consequence.

Program risk -- The probability that the actual cost, time, or performance of a system will

fail to match predictions. Also, the degree by which such predictions are missed and the associated

consequences.

Potential problem -- An identified, but not yet occurring problem that if actualized, will

impose unplanned resource demands, rescheduling, and/or degraded performance, quality, or safety

margins.

Risk area -- A collection of related potential problems. Also, a common source of several

potential problems.

Potential problem analysis (risk identification) -- Identification of risk areas and the

sequence of interrelated potential problems that stem from them. Also can include identification of

immediate cost, schedule, and performance impacts of potential problems, recognizing that potential

problems may actualize at any one of several levels of severity and that there is a probability
associated with each level.

Risk assessment -- Using the information from risk identification, and one or more quanti-

tative techniques to synthesize the information, to create an overall assessment of program cost,

schedule, or technical risk, and also an assessment of the risk contributed by each risk area. May

include ranking risk areas by severity or timing in order to identify a course of action.
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Risk management-- Identifying alternatives,selectingan approach,and taking action in
order to reducerisk to levels deemedacceptableby the organization.Action may be directedat
risk reductionor in trading one type of risk for another.In someinstances,work aroundplansand/
or contingencybudgetsaredefinedasback-upsolutionsto the selectedrisk reductionapproach.

Probability -- The relativefrequencyof an outcomeof a repeatable,observableexperiment.
Also, a measurebetween0 and 1 assignedto eachoutcomeof an experimentbasedon its relative
frequency.

Subjectiveprobability -- A measureof the lack of informationanorganizationor an
individual hasaboutthe actualoutcomeof somefuture experiment.Essentially,it is a "degreeof
belief" measurebasedon humanexperienceand reasoning,as opposedto a "frequencyof
occurrence"measure.

Probability encoding-- A processwherebythe lack of informationof anexpert is quan-
tified as a subjectiveprobability distribution on a statevariable,developedunder specific
assumptions,in a scientifically correctway, with asmuchaccuracyas is justifiable. Accuracycan
be increasedby spendingmore time perencodedvariable,or by combiningthe opinionsof several
experts.

Randomvariable-- A mathvariableX mappingthe outcomesof an experiment(perhaps
non-numerical,suchas coin flips resultingin HTH) onto real numbers,for examplethe numberof
headsin threeconsecutivecoin tosses.

Probability distribution-- A mathematicalformula that describedhow probability is
assignedto the real numbersin the rangeof randomvariable.The distribution may be describedby
either a density function p(x) or a cumulative probability function F(x). F(x) simply cumulates the

values of p(y) for all y < x. In the case of specific families of distributions (exponential, beta,

normal, etc.), the distribution is completely specified once the values assigned to the parameters of
the distribution are identified.

III. ENCODING SUBJECTIVE PROBABILITY

Most variables used as inputs to cost, schedule, and performance estimates range over a

continuous scale (e.g., weight, time, voltage). Therefore, it is critical that the risk analyst have a

process for converting each uncertainty estimate by an expert into an appropriate continuous prob-

ability distribution. The key step in this "probability encoding" process is the conversion of several

(typically, 3, 4, or 5) numbers elicited from the expert into the parameters of the specific distribu-

tion being used. Of course, the choice by the analyst of distribution type (beta, normal, etc.) is a

preliminary step to the elicitation of the estimates from the expert.

The process of encoding expert option _on uncertainty is a necessary part of any risk assess-

ment. Without it, the only other source of probability information is historical data. Many NASA

programs are to build one-of-a-kind systems, hence historical data is scarce and may not be directly



applicable.The risk analyst asks the technical experts with whom he interacts to draw analogies

from their experience with similar programs. Thus, risk analysis is more closely related to estimat-

ing by analogy than it is to estimating based on a historical data base or physical laws.

The interview between risk analyst and technical expert should consist of the following five

steps:

1. Motivating

2. Structuring

3. Conditioning

4. Encoding

5. Verifying.

The first three steps are referred to as pre-encoding, and are performed in order to make the

encoding step as accurate and painless (for the expert) as possible. Pre-encoding can be very time

consuming the first time that the analyst and expert sit down together. As the expert learns what is

expected of him and how his estimtes will be used, pre-encoding time can be reduced by a factor

of ten -- say from 20 minutes to 2 minutes per variable being encoded.

Motivating the expert includes discussing why point estimates of program variables need to

be treated probabilistically, why subjective probability is a valid approach, and how his input will

be used. Structuring is the analyst's attempt to make the estimating job easier by using units of

measure the expert is accustomed to, by using examples, and often by modeling the variable to be

encoded. As an example of modeling, a cost variable may be estimated easier if it is broken into

fixed and variable costs, or recurring and nonrecurring. A performance variable that is related via

an equation or model to several technical variables may require the encoding of the technical

uncertainty, then the use of Monte Carlo simulation (to be discussed later) of the model to obtain a

probability distribution on performance. Conditioning of an expert eliminates bias, which is a con-

scious or unconscious discrepancy between the subject's responses and an accurate description of

his underlying knowledge. The two most common causes of bias in subjective probability encoding

are anchoring (lock in on most likely value and underestimate range of extremes) and unstated

assumptions. Anchoring may be avoided by asking for extreme values first, and central values

(mode or median) second. Other less common sources are availability (base estimates on most

recent or most sensational memories) and coherence (base estimate on how many logical scenarios

can be constructed.

Accepted methods of probability encoding will be presented below. As mentioned earlier,

the analyst typically selects the distribution type but may seek input from the expert in this selec-

tion. The analyst then interviews the expert (questionnaires may also be used, if the expert and the

analyst have an established relationship) and via use of the method converts expert opinion into

parameters of the distribution. An important final step in the encoding process is verifying that the

distribution actually matches what the expert believes. Three methods of verification are: (1) Show

the expert a graph of the distribution, perhaps at a computer terminal. (2) Encode the cumulative

6



distribution function for the variableusing a different method,specifically the bisectiontechnique
for distribution on a finite interval [a,b] and the fractiles techniquefor distribution on a half-line or
the entire real line. Next, comparethe cumulativedistribution of the encodedvariablewith this
newly generatedcumulativecurve for agreementand/ordiscrepancy.(3) Calculateseveralpercentile
points (say, 0.1, 0.3, 0.5, 0.7, 0.9) for the encodeddistribution andpresenttheseto the expertto
seeif he agreesor disagreeswith them.

A. Encoding a Uniform Distribution

The uniform distribution is a two-parameter distribution, the parameters being the left (a)

and right (b) endpoint of the interval over which probability is uniformly distributed. A uniform

distribution is appropriate for situations where requirements or perhaps physical constraints restrict

the range of a variable to fall between two extremes with probability 1.0, but where the probability

of any subinterval of length c (c < b-a) is equal to c/(b-a). The appropriate density function, given

the expert has identified a and b, is:

p(x) = 1/(b-a), x in [a,b] ,

= 0, otherwise.

B. Encoding a Triangular Distribution (Method 1)

The triangular distribution has been a popular distribution among cost analysts because of its

simple form. The three parameters needed to specify a triangular distribution are the endpoints (a

and b) and the mode m, which corresponds to the peak of the triangle. Thus, by interviewing the

expert and obtaining estimates for m, a, and b, the triangular distribution density function is:

2(x-a)
p(x) - (b-a)(m-a) x in [a,m]

2(b-x)
x in [m,b]

(b-a)(b-m)

= 0 elsewhere.

If it is desired to calculate the mean and variance of a triangular with parmeters a, b, and

m, use:

p_ = E(X) = (a+m+b)/3

7



0 -2 = V(X) = [(b-a) 2) + (m-a)(m-b)]/18 .

C. Encoding a Triangular Distribution (Method 2)

Because engineers sometimes find it difficult to estimate the endpoints (a and b) of the

triangular distribution, it may be better to ask for percentile points a' (a < a' < m) and b' (m <

b' < b) and probabilities and p such that

and

P(X>b') = s

P(x<a') = p

Note that s and p can be preselected by the analyst (e.g., s = p = 0.10) or selected

arbitrarily by the expert being interviewed (p does not have to equal s). A major drawback of

method 2 for triangular distribution encoding is that the following "accelerated Newton Raphson"

recursive algorithm must be used to converge on the unknown values of a and b so that then the

density function in method 2 is defined. Here h is an estimate of the height of the triangle.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Set h = (2/b'-a') as an initial estimate.

b = b' + (p/h) + (2b'p/h+p2/hZ-2pm/h) 1/2

a = a' - (s/h) - (s2/h 2 - 2a's/h + 2sm/h) j/2

f(h) = (b' - a')h + (p + s - 2) + (2b'ph + p2 _ 2pmh)l/2 + (s a _ 2a'sh + 2smh) 1/2

f'(h) = (b' - a') + (b'p- pm)/2b'ph + p2_ 2pmh)l/2 + (sm-- a's)/(s 2- 2a'sh - 2smh) 1/2

f"(h) = - (b'p - pm)/(2b'ph + p2_ 2pmh)3/2 _ (sm- a's)/s 2- 2a'sh + 2smh) 3/2

hne w = h- f(h)f'(h)/([f'(h)] 2- f(h)f"(h))

Set h = h._w and return to step 2.

D. Encoding a Beta Distribution

The beta distribution defined on an interval [a,b] has been widely applied in program risk

analysis. Although it is more technically complex than the triangular, it offers a wider variety of

shapes (Fig. 2) and these shapes are controlled by two "shape parameters" ",/ and "q. Thus, the beta

is a four parameter distribution whose density function is fully known if a, b, % and _1 are known.
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A four-part questionnaire is used to encode information about a beta distribution, following

a technique developed by Stowell at Lockheed-Georgia Company. The expert is asked for best case

(lowest, for weight, cost, or schedule) estimate "a," a most likely estimate "m," and a worst case

(highest) estimate "b," just as in triangular method 1 above. Also, he is asked to place a confi-

dence level on the most likely ranging from "extremely confident" to "not confident," as shown in

Figure 3. Once these four values are known, a normalized modal value x is calculated according to
x = (m-a)/(b-a). The normalized end-points are 0 and 1.

Using this x and the confidence level in m, a "look--up" is performed using the matrix in

Figure 4 to identify the appropriate shape parameters. Note that the shape parameters ",/ and "q in

this matrix range from 1 to 10. These limits are appropriate for program risk analysis because: (1)

shape parameters greater than 1 assure distributions with exactly one mode; (2) if parameters

greater than 10 are used, the distributions begin to have extremely peaked appearance and practical-

ly zero probability assigned to 40 to 60 percent of the range [a,b], contrary to the intent of the

expert. Note also that when ",/ = _q, the distribution is symmetric and this occurs when m is

selected to be situated roughly at the mid point of a and b.

E. Encoding a Normal Distribution

Although few engineering variables Jan actually range from -_ to + _, the nOrmal dis-

tribution is occasionally used in risk analysis. For example, many naturally occurring distributions

are known to fit a normal distribution, such as the distribution of height and reach in humans, the
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Figure 4. Table to identify appropriate beta shape parameters from

four-part questionnaire.
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distribution of output of manymanufacturingprocesses,etc. Also, the outputof a Monte Carlo
simulation is typically normal, regardlessof the input distribution typesand the complexityof the
equationsimulated.The outputof a simulationmay be an input to a risk analysis.

The normal distribution is a two parameterdistribution,wherethe parametersarethe mean
Ix and variance0-2. Ix and 0-2may be known from history, estimatedfrom experimentalsample
data, or may be subjectiveinputs from one expertor perhapsan averageof such inputsfrom
severalexperts. In the caseof subjectiveestimateof Ix and 0-2,it is importantto remind the expert
of the correspondences:

ix +_0-excludes0.32 probability

Ix _+20-excludes0.046 probability

Ix + 30- excludes 0.0027 probability

ix _ 40- excludes 0.00008 probability.

F. Encoding a Weibull Distribution

Occasionally an expert can specify a lower bound "a" on a variable, but feels that the upper

end of the distribution should have a tail similar to the normal distribution. The appropriate dis-

tribution to model this type of uncertainty is the Weibull. This distribution has been used exten-

sively to model time-to-failure for electrical and mechanical components. Tile expert inputs a modal

value "m" as before, but selects a high value "b" with a tail probability T equal to the probability

that the actual value will exceed b (Fig. 5). Typically tail probabilities range from 0.05 to 0.20.

The low estimate "a" is one parameter of the Weibull. The other two parameters are a scale

parameter 8 > 0 and a shape parameter 13 > 0. When a --0 and 13 = 1, the Weibull reduces to

an exponential distribution with parameter 1/8. The density function is given by:

p(x) = 13/8[(x-a)/8] _-' exp[-(x-a)/8] _ , x > a ,

= 0, otherwise.

The cumulative distribution function has the relatively simple form:

F(x) = 1 - exp[,(x-a)/8) 13 , x > a

A numerical algorithm is used to converge on the unknown parameters and •
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• SPECIFY

- LEFT ENDPOINT "A"
- MOST LIKELY VALUE "M"
- A RIGHT-HAND TAIL PROBABILITY "T"
-A T-PERCENTILE POINT "B"

_,,,,_//.,./...,./P R 0 B A BI LITY T

A M B

Step 1:

Step 2:

Step 3:

Step 4:

• HANDBOOK CONTAINS A NUMERICAL METHOD TO CONVERGE
TO THE SCALE AND SHAPE PARAMETERS OF DISTRIBUTION

Figure 5. Encoding a Weibull distribution.

Compute constants

K = - ALOG(T)

Z = (b-a)/(m-a)

Set M1 -- 1.

M2 = 2.

FM1 = -K.

FM2 = 0.5*Z*Z-K.

If (ABS(M2- M1).LE.EPSILON), (EPSILON = 10-5)

Set 13 = M2

and 1/g = (1 - 1/13)*(m- a)**(- [3)
else GO to 4.

Reset constants in Step 2 using:

M3 -=- M2 - FM2*(M2 - M1)/(FM2 - FM1)
M1 = M2

M2 = M3

FM1 = FM2

FM2 = (1 - 1/M3)*Z**M3-K

GO to 3.
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IV. QUICK RISK ASSESSMENT METHODS

When a risk analysis must be performed on short notice (within 1 to 2 days), extremely

simple models must be used so that the analyst spends most of his limited time interacting with

project personnel and collecting data. Dependencies between cost and schedule are time consuming

to define and model. Therefore, the four methods presented in this section may be used to quantify

risk (due to technical uncertainty) of meeting either a cost estimate, or a schedule milestone, but not

both. Also, none of the methods presented here absolutely demand a computer for utilization.

Calculations can be done by hand or hand-held calculator, which is an important feature if the

analyst is away from his home office. A computer will make the calculations a bit faster, however

the real benefit of a computer would be to use a spreadsheet to organize the data and perhaps plot

simple graphs.

A. Equi-risk Contour Method

This method is oriented toward graphical depiction of risk and has been useful in capturing

assessments of risk associated with several risk areas, provided by a team of technical experts. To

illustrate the method, suppose the risk analyst has obtained from the project team a list of risk

areas, and a description of one or more potential problems associated with each risk area. Each

potential problem must be assessed for its risk, where risk is a function of both probability of

problem occurrence and consequence of the problem given it has occurred. The consequence side

of risk assessment has not been emphasized for several reasons: (1) often consequences are

obvious; (2) consequences often can be dealt with by the PM internally; and (3) to include con-

sequences in the risk assessment requires that the analyst encode the value system and risk attitudes

of the PM. This enters into the specialty called "decision analysis," which will not be discussed.

In the equi-risk contour method, consequence may be measured in terms of "excess cost

incurred" fixing a problem, or perhaps time delay or other operational penalty incurred to fix the

problem. For example, suppose a problem has several levels of severity and could require any-

where from $1000 to $1,000,000 to fix, if it occurs during some specific phase of the program.

Further, suppose chances of this problem occurring range from 0 to 0.5, depending on which

expert one interviews. The analyst should follow the following steps to quantify this risk:

1. Draw a risk assessment graph with consequence (cost) on one axis and probabilty of

occurrence on the other as in Figure 6.

, Get the experts to agree on equi-risk contours and regions. The contours separate .regions

of different risk from each other. Typically three or four regions are specified: high risk,

medium risk, low risk, and negligible risk. For example, if an expected loss of less than

$100 is considered negligible risk by the team of experts (or by the project manager),

then connect the points on the graph where (probability)x (consequence) = $100 to form

the contour separating negligible from low risk, as in Figure 6.
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Figure 6. Plotting expert assessments of risk on to a risk assessment graph.

3. Ask the experts, either separately or through a group interaction technique, to rate each

potential problem as to its probability and consequence. The results may then be plotted

either as points or as risk regions. Once these data are displayed graphically (Fig. 6) it is

easy to draw conclusions about expert agreement (disagreement), relative risk of one

potential problem versus another, overall significance of one risk area relative to another,
and so on.

In summary, this technique is basic, easy-to-use, and focuses on information collection,

group consensus, and graphical interpretation of risk. It is very well-suited to management briefings

and should not be discarded simply because no high-level mathematics is involved. This technique

is easily adapted to the situation at hand, be it program risk, manufacturing risk, mission opera-

tions risk, etc. The analyst is able to adapt the definitions and scaling of probability and con-

sequence to match the situation. The definitions should be agreed to in advance by the experts who

will be providing the assessments.
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B. U.S. Army Risk Factor Method (RFM)

The method presented here is the simplest, but most subjective, of three methods developed

in the mid-1970s by the U.S. Army and its contractors to perform program risk analysis. The other

two methods, Probabilistic Event Analysis and the Probabilistic Network Model, will be discussed

elsewhere. Each method permits a PM to develop a "Total Risk Assessing Cost Estimate

(TRACE)" for use in RDT&E programming and budgeting. This concept emphasizes the allocation

of funds to offset the effects of cost growth resulting from the occurrence of events that could not

be programmed because of the lack of certainty that they would materialize. The concept

recognizes that all funding demands arising during a development effort cannot be explicitly identi-

fied in advance, however, it postulates that an aggregate of these demands can be predicted statis-

tically and that this aggregate should be included in program and budget requests.

The TRACE for a program is a specific point cost estimate, selected from within a range of
potential costs for a material development program, defined to be the sum of two costs:

1. The cost of specifically programmed activities. This cost corresponds to the RTD&E por-
tion of the Baseline Cost Estimate (BCE).

2. An additional amount sufficient to offset the adverse cost impact of additional, unplanned

activities likely to require funding but not programmed/budgeted.

The amount included in cost component 2 (called the TRACE Deferral) should not be

interpreted as funding for all possible contingencies. Rather, it is based on PM judgment assisted

by a formal, quantitative risk analysis to estimate (if possible) a probability distribution on the

additional cost. The PM then applies his value system to decide if 50, 70, or 90 percent confi-
dence of no cost overrun is acceptable risk.

Potential problems included in the TRACE Deferral assessment include the following (a

more extensive list of potential problems in RTD&E programs is included in Appendix 1):

1. Technical design changes to correct deficiencies or to accommodate nominal revisions in

component performance.

2. Rescheduling to work around technical problems and nominal budgetary limitations.

3. Additional testing to verify design corrections.

4. Additional hardware to support design modifications.

5. Schedule slippages caused by late delivery of components or materials.

6. Non-negligent human error.

7. Program termination.
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Note that requirements changes and effects of inflation are not included in the TRACE. The

steps and an example of the Risk Factor Method (RFM) are now given. Both RFM and Proba-

bilistic Event Analysis (PEA) are oriented toward the WBS elements of a program. RFM subjec-

tively determines a risk factor for each WBS element where uncertainty exists and multiplies the

associated cost by this factor to get an element of the cost risk. PEA goes into more detail on the

potential problems, assessing what the problem will cost for an element as well as the probability

of the problem impacting other elements, and the associated costs.

The steps to employ in using the RFM are:

1. Prepare the engineering cost estimate for each element as defined by the WBS.

2. Compute a risk factor for each element in the WBS. This factor would include cost
increases from two areas:

(a) Cost increases which are due to the uncertainty in the individual element.

(b) Cost increases which are due to external sources such as design changes resulting

from problems with other elements.

. Multiply the risk factor from step 2 by the engineering cost estimate from step 1 for

each element in the WBS. These new figures represent the revised estimate for each

component. The sum of these revised estimates is the TRACE.

. Determine the TRACE for each year of the project. This is accomplished by multiplying

the risk factor by each element's portion of the BCE which is budgeted for each year of

the program.

RFM Example Problem

Assume that a major hardware system is to undergo a modernization program. It is also

assumed that this program will not involve any major advances in the state-of-the-art and little

interaction is anticipated between the various program elements. Therefore, the RFM is applicable.

1. The BCE is prepared for each element of the WBS as shown in column a, Table 1.

o Next, a risk factor is developed for each element of the WBS. The risk factor is a

composite factor used to account for potential increases in element cost due to both

internal and external effects caused by design changes as well as those costs of broader

origin (e.g., modest work delays, delays in funding or obtaining parts) that can affect

the cost of even the best managed programs. These factors could have been developed

from historical data on similar systems or from subjective data.
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TABLE 1. TRACE TABULATION (Thousands of Dollars)

b

a Risk c = (a x b)

WBS Element BCE Factor TRACE

Component Development

Integration and Assembly

System Test and Evaluation

100 1.10 110

20 1.25 25

25 1.20 30

Total 145 N/A 165

3. The TRACE is now determined for the project by the multiplication of columns a and b.

The total of column c is the total TRACE.

4. The only remaining step is the allocation of $20,000 in TRACE deferral (i.e., the differ-

ence between the TRACE and the BCE) to each year of the project. To accomplish this,

the risk factor in column b of Table 1 is multiplied by the yearly expenditure of the

BCE for each element within the WBS. The results are shown in Table 2.

TABLE 2. YEARLY ALLOCATION OF RISK BY PROJECT YEAR

(Thousands of Dollars)

Year 1 Year 2 Year 3 Year 4

WBS Element BCE Trace BCE Trace BCE Trace BCE Trace

Component Development 50 55 30 33 20 22 100 110

Integration and Assembly 0 0 8 10 12 15 20 25

System Test and Evaluation 0 0 10 12 15 18 25 30

Total 50 55 48 55 47 55 145 165

Advantage of RFM

1. The analysis does not require a high analytical skill level.

2. The analysis can be performed quickly and inexpensively in comparison to computer

modeling.

3. The analysis can be easily understood since complicated interrelations are avoided.

4. The quality of the analysis can be easily evaluated by management due to the openness

and simplicity of the analysis.
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Disadvantages of RFM

, The most serious difficulty would appear to be the determination of the risk factors.

Because of the apparent simplicity of the approach, there might be a tendency to use the

risk factor as simply a "fudge factor." To handle the risk factor in such a manner would

not add to the credibility of the cost estimate. In addition, the risk factor is implicitly

assumed to be constant for each element throughout the duration of the project.

. This type of analysis does not fully address the interrelationships between program

elements; nor does the analysis address savings from the early completion of the program

activities. These omissions adversely affect the quality of TRACE deferral determination
and the allocation of the monies by fiscal year. This disadvantage varies with each

project. It is more pronounced for the larger, more complicated systems.

. There is no indication of the total program risk. For example, in the networking

approach, the TRACE is selected based upon a desired confidence level of successful

completion.

4. The TRACE computed by this method uses the BCE as a basis and is subject to the
same bias as the BCE.

C. U.S. Army Probabilistic Event Analysis (PEA) Method

One of the difficulties in determining the risk factor in the Risk Factor Method is the

interaction between program elements which can develop when one segment of a project gets into

trouble. The TRACE PEA provides a method of accounting for overruns due to both the individual

item and the external factors. Two type._.of problems are addressed for each element: a Type A

problem which has a cost impact on a particular element alone and a Type B problem, which has

cost schedule impact to the total project, excluding the Type A cost to the particular element. In

describing this approach, reference is made to Figure 7. The following procedure is used:

1. The project should be broken down into WBS elements and critical milestones (column

1).

2. Estimate the point probability [P(A)] of a problem occurring in an element and causing

an overrun in the element (column 2).

3. Assess the cost impact of a Type A problem in the particular element (column 3).

4. Given that a Type A problem occurs, estimate the probability [P(B/A)] of a cost impact

on the remainder of the project (column 4).

5. Find the unconditional probability of a Type B problem P(B) by multiplying column 2

by column 4 (column 5).

6. Assess the Type B cost and schedule impact upon the project (column 6).
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Figure 7. Probabilistic event analysis example.

7. Predict the calendar time (column 7) and the fiscal year (FY) in which the problem

would occur (column 8).

8. Calculate the expected loss for each element by adding the product of columns 2 and 3

to the project of columns 5 and 6 (column 9).

9. Calculate the adjusted expected loss (AEL) for each element. The AEL is a managerial

adjustment factor to account for the fact that the PM will want to budget the full

amount if it is felt that a problem and cost impact is virtually certain. For this example,

the PM wants to fully fund for each element when the probability of cost impact is

0.75 or higher. To obtain the AEL, divide the expected loss (column 9) by the AEL

constant, 0.75 (column 10).

10. Determine the total TRACE deferral by adding the AELs for all elements and mile-

stones. Refer to Figure 8 to allocate the total TRACE deferral by FY. The objective is

to program the TRACE deferral for the FY in which it will be needed.

11. Determine the expected schedule slippage (column 3, Fig. 8) for each element by

multiplying the probability of occurrence P(B) (column 5, Fig. 7) by the schedule

impact (column 6, Fig. 7).

12. Determine the expected schedule slippage prior to each nth element (column 4, Fig. 8)

by totaling the expected slippage in the previous n-1 elements in column 3.

13. Add column 4 to column 2 to find the probabilistic date of impact (column 5, Fig. 8).

Fractional months are rounded down to minimize the impact of errors.
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Figure 8. TRACE deferral allocation.

33.6H

Total $17.46M

14. Determine the FY in which the probabilistic date of impact occurs (column 6, Fig. 8).

15. Allocate the TRACE deferral to the appropriate FY.

Advantages of PEA

While this technique is more involved than the Risk Factor Method, it is still rather easy to

use. The model addresses the interaction between elements and thus should give better results than
the Risk Factor Method.

Disadvantges of PEA

l. The technique is highly dependent upon the skill of the analyst to identify and account

for various interdependencies and is sensitive to errors in subestimates.

2. There is no indication of the program risk at the selected level of the TRACE.

3. The TRACE computed uses the BCE as a basis and is subject to the same bias as the
BCE.
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D. Analytical Technique for Cost Risk Assessment

An entirely different approach to cost risk assessment than the two above is presented in

this section. Rather than working with the WBS, this method is based on the Cost Breakdown

Structure (CBS) and assumes a collection of parametric estimating relationships is used to generate

the RDT&E cost estimate. This technique is referred to as "analytic" because no Monte Carlo

simulation is needed -- the technique depends on statistical properties of cost estimating relation-

ships (CERs) and sums of random variables (RVs).

Assume that the total cost C upon which a probability distribution is sought may be written

as a sum of element costs

n

C = E Yi

i=l

Furthermore, assume each of these Y has a cost estimating relationship of the form

y = AX B

where A and B were derived by linear regression using the equation

lnY = lnA+B log X

and, furthermore, a standard error (SE) value is available for the relationship.

The basic precedure is presented then variations are discussed. The steps in the procedure

_t_e as follows:

Step 1. Obtain an estimate of the mean tXx and variance (_x for each independent variable X for

which there exists uncertainty. The estimates of these parameters may be obtained direct-

ly from historical data or an expert, or they may be obtained indirectly by first encoding

the distribution on X and then using well-known formulas to calculate the mean and

variance.

Step 2. Estimate the mean variance of each cost element Y by using:

I_y _ A [.i.,xB
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A 2

O-y 2 = mE 2 + _ + [(la, x -I- O-x) B - (IXx - O'x)B] 2

Step 3. Assuming the cost elements Yi are stochastically independent, then calculate the mean

cost iXc and the variance in cost O-c 2 using:

_c = _ _Yi
i=l

n

O-c 2 z E O'yi2

i=l

Step 4. By the Central Limit Theorem, the random variable C is approximately normal. There-

fore, plot the cost distribution on C and/or calculate cost percentiles assuming C is
normal with mean and variance as above.

Variation 1. Cost elements are not independent. The recommended approach is to recalcu-

late the variance of C, but this time assume linear dependence (perfect correlation) among each

pair of cost elements Yi and Yj. The appropriate formula to compute the variance in C under this

(extreme) condition is simply:

n

X  y,)2
i=l

To see that this unusual-looking formula is valid, let Z = Y_ + Y2. Then

O'z 2 = O'y, 2 + O'y2 2 + 2 [E(Y1Y2)- E(Y1)E(Y2)]

Recall that if the correlation between Y1 and Y2 is l, E(YjYz)-E(Y1)E(Yz) = O-y, o-y2. Thus

O'z 2 = O-y, 2 -}- O'y2 2 "_ 2 O'y, O'y2 = (O'v, -Jr O'y2) 2

If the risk analyst is uncertain about the nature of the correlation among the cost elements,

calculating this second estimate of the variance of C gives him the opportunity to plot a second

cost distribution, again having tXc but with this larger variance than the independent case. It can be
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stated to management that the cost risk falls between these two extremes. A more precise location

of the cost risk curve involves a correlation matrix (see Variation 3 below).

Variation 2. CERs contain a multiplicative complexity factor Ci, which is itself a random

variable and therefore a source of uncertainty in Yi. In this case, the only change in the four-step

procedure involves Step 2, calculation of the mean and variance of Y.

One has Yi = CiAi xBi- The mean of Yi is easy because

E(Yi) = Ci g(Ai xBi) = CiAi E(Xi) Bi

Assuming (for each i) that C and X are stochastically independent,

Var(Y) = Var(C)E 2 (AX B) + E2(C)Var(AX B) + Var(C)Var(AX B)

(reverting to Ix and o- notation) = O-c 2 AIxx B

+ (Ixc2 + O-c2) (SE 2 + A2/4 + [(Ixx -t- O'x) B -- ([&x -- O'x)B]2)"

Variation 3. Cost elements not independent but the correlation matrix is known. If the

correlation matrix of the Yi variables is known, then the exact value of variance of C can be found

using the following formula:

n n-1 n

Var(C) -- _ Var(Yi) + 2 _ _ Cov(Yi,Yj)

i=l i=l j=i+l

where

Cov(Yi,Yj) = O'yiyj/OyiO-yj

This issue of where the correlation coefficients O-yiyj come from may be resolved in two

ways. First, if the data base contains historical data on each Yi (actual) as it occurred on programs

A, B, C, etc., then any statistical package will permit calculation of the matrix of correlations. The

other alternative, used only if data is not available, is for the project personnel (not the analyst) to

estimate the correlations among costs that can be expected for the program under analysis.
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E. Analytical Technique for Schedule Risk Assessment

The Program Evaluation and Review Technique (PERT) was developed by the Navy for the

Polaris missile program in 1958 and was used in planning and evaluation of schedule uncertainty.

Like the better known Critical Path Method (CPM), PERT utilizes a simple network model of a

project to represent the precedence relationships among activities to complete the project. Network

structures are clearly a better analytical framework for schedule analysis than the traditional bar

(Gantt) chart, which most engineers use in their planning. The PERT/CPM network is simple in its

node logic. Only one type of node is permitted in the body of the network: one that actuates only

when all activities feeding in are completed, and once actuated all output activities start simultane-

ously. Furthermore, only one start node and one terminal node are permitted. Also, no looping

back to repeat an activity is permitted, in fact, no probabilistic branching may be modeled.

Although PERT has many limitations (see Bibliography F), it is acceptable for a quick look

at schedule risk on a development project -- especially one where there is clearly one critical path

and no "near critical" paths. Here is the PERT procedure:

Step 1. Obtain three time estimates on each activity with uncertain duration:

a = extremely optimistic time to complete

m = most likely time to complete

b = extremely pessimistic time to complete

These time estimates assume resources are available to complete the activity, even if its

duration extends beyond the planned time (m), but that no effort to accelerate the activity

is being made.

Step 2. Calculate a mean and variance in activity duration for each activity in the network using
the traditional formulas:

-ix = 1/6 (a+b+4m)

if2 _ (b_a/6)2

These formulas assume activity time is beta distributed on [a,b], although they have been

shown to be quite inaccurate as estimators of the true mean and variance. A better

method is presented in Variation l, below.

Step 3. Using the mean completion time for each activity as input, apply the critical path algo-

rithm (see any operations research text) to identify the project critical path. This path is

the longest path from project start to finish.
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Step4. Calculatethe meanprojectcompletiontime by summingthe meantimes for activities
along the critical path. Calculatethe variancein project completiontime by summingthe
variances'of the activities along the critical path. This variancecalculationmakesthe crit-
ical assumptionsthat: (1) the activitieson the critical pathare independent;and (2) the
variancealong any near-criticalpath is less than the variancealong the critical path. Both
of theseassumptionsare typically doubtful for projectsof the complexityas those
performedby NASA.

Step5. According to the CentralLimit Theorem,the project completiontime will be approxi-
mately normal andthereforea project time distribution may beplotted, and percentile
points may be calculatedusingthe standardproceduresfor normal distributions:

Variance 1. In Step 2, rather than asking for the endpoints (a and b) of the hypothesized

beta distribution on activity time, ask instead for the 0.10 and 0.90 percentile points. Then use the

formulas due to Keefer (1981):

tx 0.16m + 0.42[X(0.1)+X(0.9)]

0- 2 = X(0.9)-X(0.1) 2

2.65

These formulas have been proven to significantly outperform the classical PERT formulas.

V. STANDARD RISK ASSESSMENT METHODS

The methods presented in this section are referred to as "standard" because they are widely

used in government and the aerospace industry. Two of the four methods presented have been in

use in Program Planning at NASA-MSFC since 1978. The methods all utilize Monte Carlo simula-

tion and therefore at least a microcomputer is needed, however they are not as sophisticated as the

methods given in Section VI which require a specialized simulation package. Also, the methods are

considered standard in that they require one to two weeks to apply (includes data collection, model

runs, and interpretation of output) and this seems to be the amount of time typically allocated to

conduct risk analysis for small programs such as aircraft mods, new shuttle payloads, etc. Of

course large scale programs, such as a new fighter aircraft or the Space Station project, are of such

complexity and dollar value that several months to a year should be devoted to each iteration of

the risk analysis -- and these may go on for several years. Finally, it is still true that the standard

practice in industry and government is to separately perform cost risk assessment, schedule risk

assessment, and technical risk assessment. The methods presented here are therefore not integrated

methods, which are discussed in Section VI.

The use of the Monte Carlo method (Fig. 9) to conduct a risk assessment is sometimes

referred to as "uncertainty analysis." As can be seen in the figure, a predictive equation or model
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Figure 9. Monte Carlo uncertainty analysis.

uses input variables that have been determined to be uncertain (random). A probability distribution

on each of these random inputs is determined via methods as in Section III, or based on history. A

random number generator is used to sample each of the distributions, and then an output of the

model is calculated and this number is referred to as a "pass" through the simulation. A number

(typically 100 to 300) of passes are made, thereby creating a sample on the output variables; the

combined effect of the uncertainty in all the inputs is measured by the mean and variance of the

output variable. Organizations typically have developed a general purpose Monte Carlo simulation

program that accepts subjective probability distributions (often as they are encoded in interviews),

other constants, and uses the model under study (e.g., a CER or entire cost model) as a sub-

routine. For example, Lockheed-Georgia has a Monte Carlo Simulator called QUALM (Quantitative

Uncertainty Analysis Model); NASA-MSFC has SAM (Stochastic Aggregation Model). Both of

these models were developed in the 1980-81 timeframe.

Before using Monte Carlo methods in conjunction with any model (e.g., a cost model, an

aircraft performance model), it is critical that the analyst calibrate the model. This calibration

process can be very time consuming and tedious, but it is necessary if the risk analysis outputs are

to be valid. The calibration process consists of:

1. Remove any contingency figures from the baseline estimate being used by the project.

2. Using the "most likely" values for each input variable, verify that the model produces

the baseline estimate as output. If not, determine if a data entry error has been made.

3. Using either a multiplicative or additive constant, calibrate the offending equations so

that baseline inputs produce baseline outputs.
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A. Simulation of Critical Path

This method, used by PP02 at NASA-MSFC, is a modification to the PERT approach

presented in Section IVE. Rather than analytically adding means and variances of activities along

the critical path, this method convolutes the sequence of activity time distributions by means of

Monte Carlo simulation. The critical path must be identified prior to the simulation, using either

most-likely times on each activity or mean times on each activity as the input to the critical path

algorithm. Two advantages of simulating the critical path are:

1. The encoding of time uncertainty on each activity is not restricted to the standard PERT

3-point estimate. Any type of distribution may be used as long as:

a. A method to calculate the parameters from the expert's input exists.

b. The simulation program to be used has a subroutine to generate random variates from

distributions of the type selected.

2. Simulation may pick up patterns of skewness in the input distribution and reflect these in

the shape of the output histogram -- the distribution on project completion time may be

somewhat non-normal.

The specific details of this method are:

Step 1. Identify the project critical path.

Step 2. For each activity on the critical path, obtain an estimate of the uncertainty in activity dur-

ation using one of the methods of Section III.

Step 3. Input each of these distributions to a Monte Carlo simulation program and simulate the

equation Y = E Xi, where Xi is the random variable of time to complete activity i.

Step 4. Analyze the output of the simulation (a sample on Y).

Although this method saves time in that probability information is needed only for critical

activities, it has several disadvantages and is therefore recommended only for panic situations.

First, it assumes a single, known critical path that is determined based on input most likely times.

In fact, most projects have multiple critical or near-critical paths. Furthermore, this method (like

PERT) completely neglects the variances of near-critical paths, even though these may be larger

than the variance along the critical path. Network simulation (presented next) is recommended to

determine schedule uncertainty.

B. Simulation of Project Network

A network is the natural structure to graphically represent a project, where arcs represent

activities (consume time, consume resources, generate performance), nodes represent junctures of
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activities and starting points for other activities, and paths represent sequences of activities to get

from one project milestone to another. The way in which the network's arcs and nodes are con-

nected represents project flow. PERT/CPM networks have a simple "node logic," and this logic

applies without exception to each node: all activities arriving at a node must complete before the

node is activated (milestone achieved) and all activities leaving the node are simultaneously ini-

tiated. More complex node logic is permitted the network-based simulation packages such as

GERT, VERT, and RISNET. For instance, each of these permits probabilistic branching on the

output side of a node, i.e., only one of several leaving arcs is activated and which one is acti-

vated on a given pass through the project is controlled by a discrete probability distribution on the

leaving arcs. Refer to the documentation for the specific package, or see the excellent 30-page dis-

cussion by N. Whatley in the Cost Estimator's Reference Manual. These packages are discussed in

Chapter VI.

Previous discussions of networks have assumed only time was modeled by the arc.

Advanced network analysis also permits cost distributions to be specified for each activity, as well

as cost dependencies with time. One of the network packages, VERT, has the capability to model

performance generated by each activity. In this package, if a performance variable can be

expressed as a mathematical function of other technical variables generated earlier in the project,

then performance generated will be calculated as the simulation passes through that arc. Perform-

ance generated may also be represented as a probabilistic branch, representing the various outcomes

of some activity. These performance variables are also available as inputs to cost relationships later
in the run.

Integrated cost/schedule/performance risk analysis will be discussed in Section VI. This sec-

tion refocusses on a network model of the project schedule. Various types of node logic may be

embedded in the model, but a majority of the nodes are typically of the PERT/CPM type "AND-

ALL." Note that modeling all nodes in this way is a very poor choice for an R&D project. PERT/

CPM networks have no way to model the possibility that an activity will fail, that only one of two

alternatives will be chosen, that as soon as success is achieved in one of several competing alterna-

tives, the project will move on, etc.

Interviewing technical experts and managers to define node logic is a time-consuming, but

necessary part of network analysis. Establishing activity interrelationships and node logic has the

beneficial effect of forcing: (1) better project definition; (2) recognition and acceptance of activity

responsibility; (3) better overall planning and information for briefing higher authority.

Whatever the node-logic, the process of network simulation (time uncertainty only) uses the

following steps:

Step 1. Obtain assessments of time uncertainty on each activity in the network. Some organiza-

tions stick to one distribution type (e.g., beta, triangular) while others permit any dis-

tribution within the capabilities of the network simulation package being used. Also, if

there are probabilistic branches in the network, each of these must have a discrete prob-

ability distribution encoded, and input to the simulation.

Step 2. Input distribution types and parameters.
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Step 3. Run the simulation. Each pass through the network generates a point observation on

project time. The collection of observed times constitutes a sample on project time.

Step 4. Analyze the sample in Step 3 to determine characteristics of the project time distribution.

Network simulation therefore differs significantly from critical path simulation in that the

entire network is involved -- all the project logic, and all the uncertainty information plays a role

in generating the sample on project completion time. Much more confidence can be put in network

simulation results than in either PERT or critical path simulation.

Another significant feature of VERT and RISNET is that these packages automatically store

and summarize information on "criticality." Recall that in CPM/PERT there was one critical path.

In network simulation, after each pass in the simulation, one can look back and identify which

path was critical. By keeping track of these critical paths, both VERT and RISNET tell the analyst:

1. How frequently did an activity appear on the critical path? For example, 0.50, 0.70,

0.90, 0.99. Activities that appear with high frequency are the "most critical" and should

be managed closely, and should receive first consideration for contingency funds to avoid

delays in the real project.

2. How frequently did a path serve as the critical path?

NASA-MSFC has the ARTEMIS submodule "Probabilistic Analysis of Networks" (PAN)

available on certain Hewlett-Packard computers. PAN assumes a PERT/CPM type network, and

uncertainty distributions on activity time are simulted using Monte Carlo techniques. Time dis-

tributions may take one of four forms: point, uniform, triangular, and normal. While PAN is

schedule oriented, cost relationships to schedule duration may be modeled using the mathematical

options available in the ARTEMIS system. PAN also produces an activity criticality index, as dis-
cussed above. PAN has a relational data base that can be used to integrate input and output data

into other ARTEMIS programs. However, use of ARTEMIS requires more computer sophistication

than critical path simulation, or any of the techniques of Section IV.

C. Simulation of Performance Estimating Model

In the above, it was discussed how "performance generated" could be included in a network

simulation. More often, estimates of performance uncertainty are generated completely independent

of cost or schedule considerations. This performance risk analysis is more closely related to the

sensitivity studies performed in conceptual and preliminary design than it is to project planning

and control. Although the method for a single performance equation is illustrated below, it is easy

to see that any predictive model for which there is uncertainty on inputs could be linked to a

Monte Carlo simulator, and that probability information on the model outputs (estimates) could be

generated.

Consider the case of calculatii_g th_ range of a strategic airlifter, flying at cruise altitude,

with a given payload. The well-kn0wn Breguet range equation (Fig. 10) is used as the model to be

simulated. The equation was calibrated by means of a multiplicative constant so that when nominal
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Figure 10. Uncertainty in aircraft range generated by Monte Carlo simulation.

values for independent varibles are input, the nominal design range of the aircraft was output. A

specific aircraft configuration was of course defined, and its range had been predicted by means of

a sophisticated performance routine. This in no way precluded use of the simple range equation as

a "sensitivity relationship" to be used for purposes of risk assessment.

The four beta distributions shown in Figure 11 were elicited from respective experts serving

on the design team. The weights engineer estimated weight empty (WE), the propulsion engineer

estimated cruise specific fuel consumption (SFC), and so on. Note that no one individual had the

knowledge to answer the question: "What's the uncertainty in this aircraft's range?" Inputting the

parameters of these distributions and simulating the calculation of aircraft range led quickly to a

histogram on range. These data were shown to be normally distributed, a sample mean and

variance were calculated, and a smoothed distribution was fit as shown in Figure 10. Although the

range scale has been removed, the requirement Was set at 2400 NM and there was a 95 percent

chance of meeting or exceeding this requirement. The mean range of this paper aircraft was 2550

NM. Thus, uncertainty information on performance variables can be generated easily via Monte
Carlo methods.

With careful calibration of the model and valid input distributions, this approach provides

useful information to the chief design engineer and PM on the range of possible performance

outcomes due to technical uncertainty. Note that technical uncertainty is largely a function of tech-

nology-level, and the engineers providing the subjective probability estimates on inputs were quite
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Figure 11. Beta distributions on the variables upon which range is dependent•

aware of the technology levels on the specific configuration under study. Performance uncertainty

curves such as in Figure 10 are extremely useful ways to compare competing design configurations,

or the same configuration with different levels of technology•

D. Simulation of Cost Estimating Model

An analytical approach to cost risk assessment was presented in Section IVD. The simula-

tion-based method presented here is used most often in cost risk assessment• Although some

organizations simulate to assess strictly the impacts of uncertainty in inputs to the cost model, the

approach that considers both input uncertainties and statistics-based uncertainties in the CERs

themselves is presented. Cost models for system life-cycle-cost have been linked to Monte Carlo

simulators. However, it is more common to find organizations (NASA-MSFC) that simulate to get

at a probability distribution on RDT&E cost for a proposed project• The specific set of uncer-
tainties that RDT&E cost risk assessment addresses are:

• Design uncertainty (via CER input parameters)•

• Complexity factor uncertainty.

• CER statistical uncertainties (confidence band in predicted cost expands as the input value

deviates from the center of the data base).

The steps in the process to build up a sample on a cost element Yi are:

Step 1. Obtain a probability distribution on the CER parameter X i and the complexity factor Ci.

Steps 2 through 5 apply to each simulation pass.
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Step2. Samplethe distribution on Xi to get a value. Calculatethe correspondingpoint estimate
of cost using AiXiBi.

Step3. Use the point estimateof cost (actually, this estimatesmeancost at X0, asa meanvalue,
and a variancecalculatedby SE 2 _v/Xi(X'X)-Ixi where X is a matrix made up of a

column of ls, a column of historical X values. Sample this distribution under the

assumption of normality and record the resulting cost.

Step 4. Sample the complexity factor distribution and multiply the result with the cost in Step 3.

This is recorded as the value of cost element Yi for the pass.

Step 5. Record the cost elements Yi for the given pass. Assuming these elements are

independent, sum them to get the estimate of total cost for the pass.

These steps are illustrated in Figure 12. Dependence among cost elements can be built into
the model as described in Section IVD.

NASA-MSFC Cost Risk Model History

Cost risk assessment has been performed at NASA-MSFC since 1978 using a series of

computerized risk models:

1978: NASA Headquarters (Econ, Inc.) Risk Model

1980-81 : MSFC Risk Model (Spartan, Inc.)

Stochastic Aggregation Model (SAM)

UNIVAC 1108, written in FORTRAN.

1982: MSFC Risk Model (Revision B)

Revised SAM

Apple II Plus, written in BASIC.

1984-: MSFC Risk Model (Revision C)

Current: Some Sam Logic Retained, Triangular Method 2 to encode input probability, LOTUS
1-2-3 based on IBM PC/AT.

NASA-MSFC Cost Risk Application History

Date

5-79

5-79

Project

Science and Applications Space Platform (SASP)

Materials Equipment Carrier (MEC)
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11-79

12-80

5-81

5-81

5-81

7-81

9-81

1-82

2-82

12-82

3-82

6-83

4-85

AtmosphericCloud PhysicsLab (ACPL)

Centaur

Solar Electric PropulsionStage(SEPS)

TetheredSatelliteSystem(TSS)

Gravity Probe-B(GP-B)

PowerSystemPlatform (PSP)

Acquisition Tracking and Pointing (ATP)

Gravity Probe-B(GP-B)

Gravity Probe-B(GP-B)

TransferOrbit Stage(TOS)

TetheredSatelliteSystem(TSS)

TeleoperatorManeuveringSystem(TMS)

AeroassistFlight Experiment(AFE)

E. Stochastic Aggregation Model (SAM)

Although SAM is no longer available on NASA-MSFC mainframes, the model is presented

here for three reasons:

1. It is a good example of how to build a comprehensive cost risk assessment simulation

program.

2. It is well documented (a Description and User's Manual are available from Bill

Ferguson) and it could easily be adapted to a microcomputer.

3. Some of the SAM logic is employed in the current LOTUS-based procedure, for which
limited documentation exists.

SAM is a Monte Carlo simulation program designed to help the cost analyst quantify the

uncertainty associated with a parametric cost estimate. The areas of cost risk which SAM will eval-

uate are (1) cost estimating relationship (CER) independent variable uncertainty, (2) complexity fac-

tor uncertainty, and (3) CER statistical uncertainty.
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The input requiredby SAM is certainstatisticaldataon the threeareasof cost risk; output
is a cost versusprobability S-curvetable which gives project cost as a function of the probability
that the project can be completedfor that costor less.The output canbe plotted asan S-curve
with cost on the X-axis and probability or confidenceon the Y-axis.

SAM works by randomlysamplingprobability distributionsprovidedby the userconcerning
the threeareasof cost risk and usingthe resultingvaluesto "cost the projectout" severalhundred
times. By so doing SAM builds up the necessarystatisticalfrequencydatabaseto output the S-
curve on what the expectationsare regardingproject cost.

Here is what SAM requiresfor eachcost line item on the SAM Input Form:

Independent Variable X1 (e.g., Weight, Power_.,g_t¢_)

SAM wants to know a +- 1 sigma (-70 percent) confidence range on what the value of the

independent variable might be. The most likely value (ML) should generally be the baseline value

used in the CER estimate (but see the additional discussion on this point below). The low (LO)

and high (HI) values should represent the lowest reasonable value to expect and highest reasonable

value to expect respectively, where_"reasonable" means "with 70 percent confidence." SAM also

wants to know a distribution type (T). For the independent variable, the distribution type can be

any of the five distribution types now operational (Weibull, Triangular, Deterministic, Functional,

or Thruput).

Complexity Factor

SAM wants to know the same kind of information about the complexity factor (i.e., a _+ 1

sigma range and distribution type). The most likely value should correspond to the baseline

complexity factor used for this line item in the parametric estimate. The distribution type can be

Weibull, Triangular, or Deterministic (but not Functional or Thruput).

Other Multiplicative Factors

This is an opportunity for the user to enter any other peculiar factors (such as an inflation

factor) that were used in the parametric estimate for each cost line item. SAM simply takes these

as given and multiplies all random samples of cost for the line item in question by the values

given. This way, SAM is "Calibrated" to the parametric estimate (e.g., to the same year dollars).

CER Coefficients

Tell SAM the CER constant (A) and CER slope (B1) from the Y = A(X1) B1 CER used for

each cost line item. SAM will use this to estimate the most likely cost once SAM has randomly

sampled the independent variable and complexity factor ranges.

CER Statistics

Here is where SAM accounts for the fact that CERs have statistical uncertainty associated

with them. While SAM likes to know quite a bit about the CERs, it can get by on knowing just
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the StandardError (S.E.) andnumberof datapoints (N). However, SAM can do a betterjob of
evaluatingthe statisticalrisk of a CER if the usercanalso provide the other threestatisticalfacts
called "optional" on the SAM Input Sheet.Theseare:

- The meanof the independentvariabledatapoints (X).

- The sum of the squaredindependentvariabledatapoints (EX2).

- The squaredsum of the independentvariabledatapoints (_X) 2.

When the CER was originally derived (assuming a linear regression technique such as least squares

was used), these three values were calculated. However, if they were not recorded, a companion

computer program to SAM called "CER Statistics" can be used to generate these values (if the user

is willing to input the indepedent variable data points into "CER Statistics"). See the attachment

"CER Statistics Program."

Multivariable CER Input

SAM will accommodate CERs up to four independent variables of the form:

Y = A(X1)BI(X2)B2(x3)B3(x4)B4

If such CERs were used in the parametric estimate, this is where SAM wants to know the other

independent variable values (X2 through X4) and the other slopes (B2 through B4).

Distribution Types

0 < T < 1 Weibull:

The Weibull distribution has a high side tail extending beyond the given HI value which

can be specified to hold some probability. Use the Weibull where there is some risk that the high

value (HI) of the triangular distribution might be exceeded. Enter this high tail probability as a

decimal fraction for T. Typically, Weibull tails are 5 to 20 percent probability (T -- 0.05 to T --

0.2). Anytime SAM encounters such a decimal entry for T it is assumed to indicate a Weibull dis-

tribution and the value of T is used as the probability in the high tail.

T = 1 Triangular:

Use the Triangular distribution for most situations where the low, most likely, and high

values of either the independent variable or complexity factor are known (70 percent confidence

band).
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T = 5 Deterministic:

Enter T = 5 to signalSAM that a deterministicinput is desiredandenter the deterministic
value desiredasthe Most Likely (ML) value. SAM will use the deterministicvalue asgiven and
will not performrandom samplingfor this input. Use the deterministicfor independentvariablesor
complexity factors which have no uncertainty.

T = 7 Functional:

In most cost estimatesthereare "wraparound"cost line items which are functionsof other
cost line items (e.g., ProjectManagement).TheseCERsusethe sumof certain"above" line items
as the independentvariable.The T = 7 functional input can be usedto makeSAM sum the cost
of certain above-lineitems (the cost as they haveprobabilisticallybeencalculated)and usethis as
the independentvariable for a wraparoundCER. To signala functional line item, enterT -- 7 and
specify a rangeof line itemsto be summedby enteringthe startingitem number(M) in LO and
the ending line item in HI. For example, if it is desiredto sumthe cost of line items5 through8
and use the result as the input for a CER for line item 12, tell SAM this by enteringfor line item
12 the following: LO = 5, HI = 8, T = 7.

T = 8 "Thruput" Cost:

Often it is desirable to "thruput" a cost number without exercising a CER and without the

cost being affected by any random simulation process. Use T = 8 for any cost line item for which

it is desired to thruput a cost and enter the thruput value as the independent variable ML. SAM

will take the value entered in the ML position and use it as the final cost for this line item without

any altering effects. The T = 8 Thruput input is only valid for the independent variable T input. A

T = 8 Thruput for complexity factor is invalid.

Summary of Valid Distribution Type (T) Inputs

Independent Variable Complexity Factor

Weibull 0 < T < 1

Triangular T = 1
Deterministic T = 5

Functional T = 7

Thruput T = 8

Weibull 0 < T < 1

Triangular T = 1
Deterministic T = 5

Example Case ("Project X")

An example case for "Project X" has been made up to aid the user. The example has been

designed to use all the features of SAM which are currently operational.
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SAM Input Form for Project X:

. Structures: Costed with a weight (lbs) versus cost CER. A probability distribution on

weight was used for LO = 3001b, ML = 5001b, and HI = 9001b, to be sampled as a

Triangular distribution. A complexity factor Triangular probability distribution was also

specified with LO -- 0.9, ML -- 1.0, and HI = 1.2. An inflation factor of 1.338 was

specified to bring the CER costs from old year dollars to today's dollars. No other

calibration factor was required so Other = 1.0. The structure CER used was Y =

0.58(500) 0.654 with an S.E. -- 0.629, and N = 9. CER statistics were available for X1.

Since structure was costed with a single independent variable CER, the multivariable

CER inputs are all zero.

2. Attitude Control: Similar to above except a Weibull distribution was specified for the

complexity factor with a 15 percent probability of exceeding the HI value of 1.4.

3. Communications: Similar to above except that a bivariate CER was used [Y =

0.011 (250) 1.269(60)0.065].

° Systems Test Hardware: The T -- 8 signals a "Thruput" and SAM will use the l0

entered as ML as thruput cost value (in this case, cost in millions) and will not perform

any simulation around the $10M. Also T -- 5 and ML = 1.0 for complexity factor

signals a Deterministic complexity factor value of 1.0 is desired (again, without simula-

tion). Since a thruput is being used SAM will ignore all CER entries (but zero's are

entered as a convenient way to cause the menu to progress during data file entry).

° Systems Test Operations: The T = 7, LO -- 4, and HI = 4 signals SAM that this is

a Functional cost line item (specifically that Systems Test Options is a function of line

item 4-Systems Test Hardware). SAM will calculate the Systems Test Ops cost by using

the simulated cost result of line item 4 as the independent variable input to the CER.

Note that another feature of SAM is also illustrated here: the independent variable,

instead of being input into a "regular" CER, is instead input into a CER of the form Y

= 0.10(X1) j° which is simply a way of modeling the case where Systems Test Opera-

tions is calculated as 10 percent of Systems Test Hardware.

. Management: Again T = 7 signals a Functional line item. However, this time, since

LO -- 1 and HI =- 5, SAM will sum the simulated costs of line item 1 through 5 and

use the result as the independent variable input to the CER.

SAM Output for Project X

The output run for Project X consists of (l) listing of the input data, (2) the Project Cost

Simulation results (a few hundred samples of total project cost), (3) a summary by cost line item

of both (a) the average simulated cost and (b) the CER cost or "no risk" cost, and finally (4) a
Confidence-Cost Table.
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This last item, the Confidence-Cost Table, is the "bottom line" of the risk analysis. It gives

the percent confidence associated with the given cost. For Project X, the CER estimate of $62M is

only about 32 percent confident (68 percent chance that an overrun will occur). To get to a more

reasonable level of confidence, say 70 percent, would require $132M (or about 113 percent contin-

gency). This example is not typical of actual projects. Most of the "real" analyses performed by

SAM will typically show that something like 20 to 40 percent contingency is usually sufficient to

reach 60 to 80 percent confidence.

SAM Technical Notes

More on What the "Most Likely" Value Means:

For CER independent variable inputs, the correct value to input to SAM is the value used

for the CER independent variable in the original baseline cost estimate less any contingency applied

for risk. For example, if Electrical Power was estimated as a function of a watts requirement, say

1150 Watts, and this 1150 Watts included 15 percent contingency in case the power requirements

grew due to unforeseen circumstances, then the SAM Most Likely (ML) input should be 1000

Watts. This is because the risk analysis itself is designed to evaluate the risk of a power growth

and should be centered around a Most Likely that is risk free. However, care should be taken to

try to distinguish between a contingency allowance for risk and a contingency allowance simply

included to take care of miscellaneous small requirements. That is, if the extra 150 Watts were

added to take care of requirements in the power budget that were not itemized but are known to be

present, then the 15 percent is not a risk allowance and should be included in the Most Likely
SAM input.

How SAM Handles CER Risk:

The risk of the CER is calculated by SAM as a confidence interval around the CER using
the formula:

Y + (S.E.)(TDIST)(XTRAP)

where Y = CER cost without risk, and the confidence limit is a + band around the CER defined

by the product of (1) the CER standard error (S.E.), (2) a Student's Distribution factor (TDIST)

for N-2 degrees of freedom and any., given percent confidence, and (3) a factor (XTRAP) which

accounts for how far SAM is having to extrapolate beyond the mean of the data points of the

CER. The value TDIST is generated internally by SAM as a function of N. XTRAP is generated

internally as a function of the optional CER statistics on the SAM Input Form XI, _]X12, and
(_Xl) 2.

XTRAP _1 + 1 (Xp-X) 2m_ __ q_

n (EX 2 - (EX)2/n
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If S.E. doesnot apply (e.g., if a CER wasnot usedto estimatea cost line item or if the
S.E. is unavailable)a zeroentry may be madefor S.E. In sucha case,SAM automaticallyignores
all other CER statisticsentriesand will not samplea CER distribution. However, for datasyn-
chronizationpurposes,zeroentriesmustbe madefor N, X1, X12 and (X1) 2, X2, X3, X4, B2, B3,
and B4.

If S.E. is known, but the optional CER statistics are not available, enter the S.E., the

number of data points N, and zero's for the three optional CER statistics entries.

If multivariable CERs were used, enter the independent variables (X2, X3, X4) and slopes

(B2, 3, B4). For any unneeded entries (which will be all six values if a single independent variable

CER was used), enter zeros.

Interpretation of SAM Output:

The cost risk data output by SAM should be interpreted as quantifying the cost uncertainty
due to:

• Uncertainty in the CER inputs (weight, power, etc.).

• Uncertainty in the complexity factor

• CER Statistical Uncertainty due to:

- Scatter in the CER data points (S.E.).

CER sample size. The TDIST adjustment to S.E. allows for this risk by using a

Student's distribution for small N values. At high N values (>30 data points) the t dis-

tribution approaches the normal -- all of which SAM automatically accounts for when

given a value for N from the SAM Input Form.

Degree of extrapolation beyond the mean of the CER data base (how well the "size" of

the item being estimated matches the average of the CER data points). The XTRAP

adjustment to the CER S.E. allows for this risk by causing the CER confidence in-

tervals to spread as a function of the distance form the mean of the data.

Bias of Least Squares Log Transforms. Using the linear regression technique of least

squares to derive a nonlinear y = ax b CER requires a log transform of the data. The

curve fit is then made based on log values. When the values are converted back to

antilog form a bias is introduced whereby the CER yields predicted costs that are less

than 50 percent confident. The degree to which the CER is biased low is proportional

to the S.E. but usually is on the order of 5 to 10 percent or so. SAM recognizes this

bias by sampling the skewed log normal distribution for CER cost. Thus, the mean

cost from the CER sampling will usually be higher than the CER estimate.

There are obviously other risks which can impact cost other than those discussed above.

Thus, SAM does not quantify all risks associated with a cost estimate. SAM does not account for
such risks as:
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- Designchangesbeyondthosereflectedby the rangesusedfor the CER independentvari-
ables.

- Additional requirementsbeyondthoserepresentedby the line itemscosted.

- Risk associatedwith inappropriatedesignspecifications,CERS,or complexity factors.

Vl. INTEGRATED PROGRAM RISK ANALYSIS

The state-of-the-art in program risk assessment techniques is presented here. All techniques dis-

cussed are network-based, and the activities in the network have both time and cost estimates.

Furthermore, time and cost dependency is modeled and therefore the effects of these dependencies

are included in each simulation pass through the network. The advantages of such integrated cost/
schedule simulation are:

1. The cost uncertainty associated with the interaction of the activity schedules and their

uncertainty is accounted for in the total cost.

. There is maximum flexibility in the selection of assumption and form of output in order

to support the PM with "what if" studies. Probabilistic information on costs, schedules,

and project outcomes can be extremely useful for budgeting exercises.

3. When maintained on a continuing basis, the project network is readily available for rapid

response to questions.

4. The network can be run with, then without, uncertainty information and fall-back alterna-
tives in order to estimate the TRACE Deferral.

5. The network can be used for tracking and control, too.

Organizational factors that mitigate against the use of integrated cost/schedule risk analysis

as depicted in Figure 13 are:

1. Sophistication of techniques requires a dedicated specialist -- M.S.-level with good

computer, systems analysis, and people skills.

. Matching WBS to scheduled activities is challenging. Network logic is more complex,

and the output of simulation can be very sensitive to the logic employed. Especially

important are branching probabilities.

. Planning, conducting, and validating the data gathering are time consuming. Program

management must be prepared to wait, perhaps several months, before the first useful

output appears.
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• CAN BE IMPLEMENTED USING GERT, VERT, RISNET, SLAM

• BUILDING NETWORK, COLLECTING DATA IS TIME-CONSUMING

• ONCE DEVELOPED, IS VERSATILE TOOL
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Figure 13. Integrated cost/schedule risk assessment.
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Cost and schedule analysis/control are often handled by separate organizations. The risk

analyst must cross these boundaries. Also, the risk analyst is sometimes regarded as

attempting to usurp the roles of schedule and cost analysts.

Special software will have to be obtained, and analysts trained to use it. Such software

packages exist; the three best known (GERT, VERT, RISNET) will be discussed only

briefly below because ample documentation (textbooks, user's guides) exists.

A. GERT (Graphical Evaluation and Review Technique)

GERT is a network simulation package (FORTRAN IV) available from Pritsker and Asso-

ciates that includes features such as probabilistic branching, network looping back to previously

activated nodes, multiple sink nodes, and multiple node realizations (repeat events), all of which

are not available in PERT/CPM network models. These GERT features provide the user with the

capability to model and analyze projects and systems, such as queues in manufacturing processes,

of a very general form. Since many real-world projects and systems involve probabilistic

occurrences, false-starts, activity repetition, and multiple outcomes, GERT and its advanced version

Q-GERT is an ideal tool for modeling and analysis. GERT is oriented toward supporting

management in preliminary planning, and special studies, rather than toward project control. The

capabilities of GERT are a subset of the capabilities of the general-purpose simulation language

SLAM, also from Pritsker. SLAM is being used at NASA-MSFC by J. Steincamp and D. Lanier
in PD34.

In GERT, an activity has a probability associated with whether it is included in the project

on a given simulation pass. This probability is an input to the simulation and is attached to one of

the branches of the node of origin of the activity. For example, activity X has a 0.7 probability of

inclusion shown in Figure 14. Also there are ten options for the time distribution to be encoded for

an activity. Finally, each activity has a cost function associated with it made up of a fixed cost

(incurred each time the activity is conducted) and a variable cost expressed as dollars per unit time.

GERT nodes have both an input and an output logic. For inputs, the number of completed

activities feeding a node required before the node activates can be specified. Furthermore, as

shown in Figure 14 on node 16, a different number of completions may be specified for the first

pass (3) than subsequent passes (2). Multiple completions fo the same activity count. Node 18 in

Figure 14 illustrates another type of input logic -- here the specified number of different activities

must complete before the node activates. Options also exist that halt all other on-going activities

once the input criteria are satisfied. Using these node options, complex substructures as shown in

Figure 15 are easily prepared.

One of the unique features of GERT is that it permits collection of statistics on how fre-

quently each of several terminal nodes is realized. For example, one node in an R&D project

might be "project wash-out." A simulation might discover that there is a 0.25 chance of project

wash-out, and then management could compare the cost and time distributions on that node to

decide if the risk of failure was too great to continue the proposed approach.
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Statisticscan be collectedfor any designatednodes(project milestones)and the sink nodes
on cost, schedule,and activity counts.For eachof thesenodes,information is providedregarding
the mean,standarddeviation,maximum, andminimum for both time and cost.Theseoutputdata
will be illustrated in the examplebelow.

The exampleR&D processshownin Figure 16 representsfour R&D projectsof identical
structures,with a complex interlocking structure.Furthermo::e,two teamsare involved. Research
Team 1 startson Project 1 (node 10)at the sametime that Team 2 starts on Project 4 (node 40).

When Team 1 terminates Project 1, either by washout at node 17 or successful completion at node

17, it proceeds to Project 2 (node 20). Team 2 follows a similar process as it works Project 4,

then Project 3. Also if either team completes its second project before the source node of the

opposing team's second project has activated, that team will begin work on a third project.

The GERT inputs for this model are shown in Figure 17. Figure 18 shows the relative

frequencies of success/failure for each project. Summary tables on cost and time for each project

are available in the 1977 paper by Moore and Taylor. The statistics for the overall R&D activity

are shown in graphical form at the bottom of Figure 18. Such data could obviously be used in con-

tract negotiations and budget/manpower planning.

B. RISNET (Risk Information System and Network Evaluation Technique)

RISNET is a network simulation package that has been employed extensively on U.S. Army

programs during the past 10 years. It has been developed and continually improved by John M.

Cockerham and Associates, Inc. RISNET can run in either deterministic or probabilistic modes.

Like GERT, RISNET i_epresents cost as a function of activity time using a fixed cost plus a vari-

able cost. However, RISNET permits these costs to have probability distributions (normal, uniform,

or triangular) on them, or to be represented as a constant. Each activity can have up to 20 different

funding categories (subcosts) associated with it, each with its own linear cost relationship.

RISNET node logic is not as complex as that of GERT, described above. The only advance

of RISNET node logic over PERT/CPM is that it permits probabilistic branching on the output

side. RISNET has an interactive, menu-driven input module that makes data entry easy. Most

analysts prefer the computer system's data editor over the RISNET data editor.

A real strength of RISNET is that it was developed specifically for application in the U.S.

Army R&D area, so it is oriented toward fiscal years and the TRACE concept (discussed in Chap-

ter IV). The RISNET output module produces graphics terminal output, printer output, and plotter

output for deterministic and probabilistic simulations. Output is available by Fiscal year or pre-

selected time interval (e.g., a quarter). Outputs similar to GERT include cumulative distributions

and frequency distribution, for both time and cost by total program or preselected subnetworks.

TRACE output is by Fiscal year, and includes the BCE, the TRACE Deferral, and the total

TRACE, with probability distributions so that the PM can select his level of acceptable risk or tell

others the risk implications of budget cuts.
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Time Cost

Activity Activity Probability Estimates (Days) Estimates (S)

(Nodes) Description(Project) of Occurrence Min Mode Max Distribution Set-Up Variable

IO-i ! Project Start (I) 1.00 0 Constant 10,000 0

11-12 Problem Definition (I) 1.00 20 30 50 Beta 0 450

12-13 Research Activity (I) 0.80 60 100 120 Beta 2,000 300

12-11 Redefine Problem (1) 0.20 0 Constant 0 0

13--14 Solution Proposal (1) 1.00 7 15 20 Beta 0 500

14-15 Develop Prototype (1) 0.60 60 80 100 Beta 7,000 600

14-12 More Research (I) 0.10 0 Constant 0 0

14-11 Redefine Problem (I) 0.10 3 Constant 0 0

14-17 Project Washout (i) 0.20 0 Constant 1,000 0

15--16 Implementation (1) 0.60 75 90 130 Beta 3,000 500

15-15 Redevelop Prototype (1) 0.40 60 80 !(30 Beta 1,000 600

16--20 Completion (l)/Project (2) 1.00 !0 Constant 2,000 0

17-20 Washout (l)/Project (2) 1.00 10 Constant 2,000 0

20-21 Project Start (2) 1.00 0 Constant 8,000 0

21-22 Problem Definition (2) 1.00 7 21 28 Beta 0 525

22-23 Research Activity (2) 0.60 25 40 90 Beta 2,500 425

22-21 Redefine Problem (2) 0.40 0 Constant 0 0

23-24 Solution Proposal (1) 1.00 15 25 40 Beta 0 450

24-25 Develop Prototype (2) 0.60 20 60 90 Beta 5,000 525

7AI--22 More Research (2) 0.27 0 Czmstzat 0 0

24-21 Redefine Problem (2) 0.10 3 Constant 0 0

24-27 Project Washout (2) 0.03 10 Constaat 1,000 0

2.5--26 Implementation (2) 0.80 15 40 60 Beta 4,500 375

25-25 Redevelop Prototype (2) 0.20 20 60 90 Beta 1,000 525

26-30 Completion (2)/Project (3) 1.00 10 Consta_lt 2,000 0

2"/-30 Washout (2)/Project O) 1.00 10 Constant 2,000 0

30--31 Project Start (3) 1.00 0 Constant 18,000 0

31-32 Problem Definition (3) 1.00 35 70 120 Beta 0 525

32-33 Research Activity (3) 0.50 80 150 200 Beta 4,500 425

32-31 Redefine Problem (3) 0.50 0 Constant 0 0

33-34 solution Proposal (3) !.00 21 40 50 Beta 0 625

34--35 Develop Prototype (3) 0.55 105 170 210 Beta 6,500 600

34-32 More Research (3) 0.10 0 Constant 0 0

34--31 Redefine Problem (3) 0.05 3 Constant 0 0

34--37 Project Washout (3) 0.30 0 Constant 2,000 0

35-36 Implementation (3) 0.75 60 120 200 Beta 5,500 500

35-35 Redevelop Prototype (3) 0.25 105 170 210 Beta i,000 600

36--20 Completion (3)/Project (2) 1.00 10 Constant 2,000 0

$'/-20 Washout (3)/Project (2) !.00 10 Constant 2,000 0

40-41 Project Start (4) !.00 0 Constant 13,500 0

41-42 Problem Definition (4) !.00 20 45 60 Beta 0 475

42--43 Research Activity (4) 0.90 21 30 55 Beta 3,500 500

42-41 Redefine Problem (4) 0.10 0 Constant 0 0

43-44 Solution Proposals (4) I.(30 14 30 45 Beta 0 625

44-45 Develop Prototype (4) 0.70 50 90 150 Beta 4,000 500

44-42 More Research (4) 0.18 0 Constant 0 0

44--41 Redefine Problem (4) 0.10 3 Cons',_,nt 0 0

44-47 Project Washout (4) 0.02 0 Constant 1,000 0

45--46 Implementation (4) 0.60 35 75 100 Beta 2,700 550

45--45 Redevelop Prototype (4) 0.40 50 90 150 Beta !,000 500

46--30 Completion (4)/Project (3) !.00 10 Constant 2,000 0

47-30 Washout (4)/Project (3) 1.00 10 Constant 2,000 0

Figure 17. Activity descriptions with probability, time, and cost estimates.
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The RISNET computer model hardware requirements are the following:

1. Hewlett-Packard 1000/A900 computer

2. 3.84 megabyte (rob) memory

3. 400 lines per minute printer (model 2608S)

4. 1600 bpi magnetic tape drive (model 7970E)

5. 65 megabyte (mb) fixed disk drive (model 7912)

6. 404 megabyte (mb) removable disk (model 7935)

7. Color graphics terminal (model 2627A)

8. Plotter (model 9782T).

Software requirements are the following:

1. RTE-A with VC and REV 2326

2. Graphics/1000-11 REV 2326 with both device independent graphics and advanced

graphics.

C. VERT (Venture Evaluation and Review Technique)

The VERT network analysis model was developed by Moeller while employed by the U.S.

Army. The model is public domain, written in FORTRAN for an IBM machine. An enhanced ver-

sion of VERT is available from TRIAD Microsystems. Like the RISNET models, VERT is a

stochastic simulation network model with probabilistic node logic. The VERT model is more math-

ematically oriented than the RISNET models. VERT has 37 mathematical transformations which

can be used to express the relationship between key variables, whereas the RISNET models have

one linear relationship between time and cost.

VERT also has the added advantage of incorporating performance values as a risk factor in

network evaluation. With VERT an analyst can model time, cost and performance values, and

uncertainties for each activity independently of each other using one of the following 16 different

statistical distributions available in VERT:

Beta

Binomial

Chi Square

Constant
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Erlang

Exponential

Gamma

Geometric

Hypergeometric

Lognormal

Normal

Passcal

Poisson

Triangular

Uniform

Weibull

Activity time, cost, or performancevaluescanbe modeledasa function of any otherarc's
or node's time, cost, or performanceparameterin the network using anyof the following 37 math-
ematical transformationsor a combinationof thesetransformations:

CodeNumber Transformation Restrictions Notes

1 or51
2 or 52
3 or 53
4 or 54
5 or 55
6 or 56
7 or 57
8 or 58
9 or 59

10or 60
11or61
12 or 62
13 or 63
14 or 64
15 or 65
16 or 66
17 or 67
18 or 68
19 or 69

20 or 70

X*Y*Z = R
(X*Y)/Z = R Z NE 0.0
X/(Y*Z) = R Y*Z NE 0.0
1/(X*Y*Z) = R X*Y*Z NE 0.0
X+Y+Z = R
X+Y+Z = R
X-Y-Z = R
-X-Y-Z = R
X*(Y + Z) = R
X*(Y-Z) = R
X/(Y+Z) = RY+ZNE0.0
X/(Y-Z) = R Y-Z NE 0.0
X*(Y) z = R Y GT 0.0
X*(LOGe(Y*Z) = R Y*Z GT 0.0
X*(LOG1o(Y*Z) = R Y*Z GT 0.0
X*(SIN(Y*Z) = R
X*(COS(Y*Z) = R
X*(ARCTAN(Y*Z) = R
X GE Y..... Z = R
X LT Y..... Y = R
X GE Y..... Y -- R
X LT Y..... Z -- R

(*Meansmultiply)
(NE meansnot equal)

(GT meansgreaterthan)

(GE meansgreaterthan or equal to)
(LT meanslessthan)
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21 or71 XGEY ..... Z -- R
XLTY ..... X = R

22 or 72 XGEY ..... X = R
X LTY..... Z = R

23 or 73 (X*Y)+Z = R
24 or 74 (X*Y)-Z = R
25 or 75 (X/Y)+Z = R
26 or 76 (X/Y)-Z = R
27 or 77 (X+Y)*Z = R
28 or 78 (X+Y)/Z = R
29 or 79 (X-Y)*Z = R
30 or 80 (X-Y)/Z = R
31 or 81 X+(Y*Z) = R
32 or 82 X-(Y'Z) = R
33 or 83 X+(Y/Z) = R
34 or 84 X-(Y/Z) = R
35 or 85 -X-Y+Z -- R
36 or 86 -X+Y+Z = R
37 or 87 X/Y/Z = R

Y NE 0.0
Y NE 0.0

Z NE 0.0

Z NE 0.0

Z NE 0.0
Z NE 0.0

Y NE 0.0
Z NE 0.0

Transformationnumbes1-37 and 51-87use floating point computationsinitially to derive a
value for R. However, transformations51-87 truncateR to an integervalue whereastransformations
1-37retain R in its floating point form.

Structuringa mathematicalrelationshipwithin a VERT network consistsof essentiallythe
following threephases:

1. Long or complicatedmathematicalrelationshipsneedto be brokendown into a seriesof
three-variableunit transformationsshownpreviously.

2. Valuesfor each of the threevariablesX, Y, andZ in eachsingleunit transformation
must be defined. Thesevaluescanbe retrievedfrom (1) previously processedarcsor
nodes,(2) constantsenteredon thesesatellitearc records,or (3) one of the previously
processedtransformationscomputedin the current seriesof transformationsusedto
generatea time value for the currentarc underconsideration.Valuescalculatedfor each
time transformationareconsecutively,temporarily storedin a one-dimensionalarray.
This enablesretrieving the value calculatedfor a prior transformationfor use in the
currentunit transformation.On completionof all the unit time transformationsfor a
given arc, this temporarystoragearray is cleared.Thus, only the valuescalculatedfor
previously derivedunit time transformationsdevelopedfor the currentarc underconsider-
ation can be referenced.When retrievingnumericalvaluesfrom a previouslyprocessed
arc or node, the time, cost, or performancevalue calculatedfor the referencednodeor
the primary (not cumulative)time, cost or performancevaluegeneratedfor the refer-
encedarc is retrieved.
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. Results of each of the unit transformations needed to develop a value for an arc's time

can be either summed into the overall time value generated for the arc under considera-

tion or it can be omitted. When the resulting value of a unit transformation is omitted,

this transformation is generally an intermediate step for calculating the value of a long or

complicated mathematical relationship.

Transformation Example. Suppose the value for the performance of a given arc is related

to the time, cost, and performance values generated on this arc and other previously processed arcs

and nodes as follows:

PAl0 = (PAl + PA2 + PA3) • (TA1) * (LOGe(CA1 * CA2))
(PA4 * PA5 * PA6)

,(TA10)
+ (188.6) (CA10--'-_ + (15.8)* (TN1)

where

TN1 = the time value for the node N1

TA1 = the time value for the arc A1

TA10 = the time value for the arc A10

CA1 = the cost value for the arc A1

CA2 = the cost value for the arc A2

CA10 -- the cost value for the arc A10

PAl = the performance value for the arc A1

PA2 -- the performance value for the arc A2

PA3 = the performance value for the arc A3

PA4 = the performance value for the arc A4

PA5 = the performance value for the arc A5

PA6 = the performance value for the arc A6

PAl0 -- the performance value for the arc A10
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The following dimensioned record layout illustrates how the preceding equation is put into

record form.

A10 RPERF 1 50 PAl PA2 PA3 Trans. No. 1

A10 RPERF 2 40 PA4 PA5 PA6 Trans. No. 2

A 10 RPERF 3140TA 1 CA 1 CA2 Trans. No. 3

A10 RPERF 4 1S 1.0 2.0 3.0 Trans. No. 4

A10 RPERF 5 2SK188.6 TA10 CA10 Trans. No. 5

A10 RPERF 6 ISK15.8 TN1 K1.0 Trans. No. 6

VERT allows the user to tie together mathematically any two points within the network, as

well as to establish a variety of mathematical relationships between time, cost, and performance

values for any given activity. These features are not found in any other network simulation tool.

Thus, the VERT model is the appropriate tool for the analyst who is serious about performing

integrated cost/schedule/performance risk assessments of R&D programs. TRIAD VERT has the

additional capability of presenting the probabilistic output of VERT by fiscal year and by month.

Neither VERT nor TRIAD VERT has the color graphics output capability of RISNET; both

VERTs are printer-oriented. Although VERT does not require a high degree of computer sophis-

tication to operate, its input process is a batch-oriented, 80-column record format, so it is more

time consuming and tedious to use than RISNET. VERT is written in FORTRAN IV and has been

adapted to IBM, Univac, DEC VAX 11/780, CDC, and PRIME computers. For a case study

application, see the paper "Operational Planning with VERT" by Moeller and Digman.

D. A Conceptual Model for Integrated Technical/Cost/Schedule Risk Assessment

Very little has been said in this handbook about the risk identification phase of risk analysis

(Fig. 1). Risk identification is a period of intense interaction between risk analyst and project

personnel to define the nature of the risk and how/when it might come to bear. The best dis-

cussions in the literature on this topic are the 1982 paper by Kramer (describing his work at

Boeing-Vertol) and the 1982 paper by Batson, "Impact Diagrams: A Graphical Procedure for

Potential Problem Analysis," presented at the San Diego ORSA/TIMS meeting.

Following the work of Kramer, a concept for linking risk identification data gathering to

cost/schedule network simulation was proposed by Batson at Lockheed-Georgia in 1983. Kelly

developed the concept into a well-defined process (called CPM/RISK) which is outlined here. The

essence of the process is that information on risk areas and their time/cost impacts are collected

from the design and technology engineers, using a form as shown in Figure 19. Once the impact

points of all risk areas on the network are known, it is then necessary to reorganize potential

problem information by grouping according to activity (Fig. 20). This summary sheet would then

be shown to the person who would manage that activity on the project, and he could alter it to

match his judgment about probabilities, penalties incurred, etc. Note also that he is permitted to

specify a probability and cost for an "unknown" problem, i.e., a problem not listed. Assuming this

individual has managed a similar activity before, he ought to be able to estimate the extent of

unknowns that lurk in the future. "
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Finally, using a program called ACTIVE to simulate the occurrence of the problems on

each respective activity, a VERT input file would be created. VERT would then simulate the

project using only its capability to simulate a cost/schedule network with and-all node logic. The

results, as shown in Figure 21, would include cumulative distributions on time and cost, and criti-

cality information on activities.

VII. SUMMARY AND RECOMMENDATIONS

Based on a thorough literature search, the range of quantitative methods for program risk

assessment have been presented. As shown in Figure 22, twelve distinct alternatives were dis-

cussed. All methods are based on the Bayesian view of probability; they differ in how subjective

probability is collected (level of detail, assumptions, distribution types, etc.) and how these proba-

bilities are combined into an overall assessment of uncertainty. After reading through the tech-

niques, the reader is aware that although "a risk assessment" can be done in a matter of several

days, the truly comprehensive risk methods treat technical, cost, and schedule risks in an integrated

(network-based) fashion and require at least one month of up-front development. The management

benefits of integrated, network-based methods are worth the expense and waiting-time for the initial

model output.

The recommendations for NASA-MSFC based on discussions with Program Planning Office

personnel and the contents of this handbook are:

. Commit to performing integrated cost/schedule risk assessment on each program prior to

releasing RFPs for the phase in question. Quick risk assessments are, of course,

appropriate in certain circumstances.

. Require contractors to perform quantitative risk assessments as part of their proposal

preparation effort. Require that these assessments be submitted as part of the technical

volume or as a separate volume, or back-up document. Be explicit that meaningless

LOW-MEDIUM-HIGH risk ratings are not acceptable, and that integrated methods are

preferred. Require risk analysis be part of the system's analysis/PM process after contract
award.

3. Select (or hire) a full-time risk analyst to be stationed in Program Planning with the

following responsibilities:

• Perform risk analyses on all PD studies, with early involvement with PM and study
team.

• Write risk analysis requirements for all RFPs.

• Develop and document databases, questionnaires, and methods.
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• Plan evolution of tools, either in-house development or outside acquisition_

• Train project control personnel to perform risk analyses.

• Interface with other centers.

• Consult with PMs, chief engineers on use of risk analysis on their projects.

4. Commit to investing the time and money to build a state-of-the-art capability in program

risk analysis at NASA-MSFC.

• Give selected analyst one year to build background, learn to use tools you have

(ARTEMIS, SLAM, a_d SAM), and to review'a'vail-able methods and computer pack-

ages.

• Consider purchase of network simulation package designed for risk analysis

_hL
- RISNET

- TRIAD-VERT

5. Inform technical personnel in PD, and lab personnel supporting PD, about what risk

analysis is and how they may be involved. Perhaps include some training in basic statis-

tical concepts (classical and Bayesian) and generally encourage team-work, cooperation

in generation of risk information.

6. As experience is gained, consider expanding this handbook to include:

- risk identification methods

- risk management methods
- lessons learned

- case histories

7. Consider expanding from one risk analyst to a risk and decision analysis group.
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APPENDIX A

PROGRAM SOURCES OF UNCERTAINTY

The following is a generic list of areas of uncertainty likely to be encountered on new

programs. The DoD acquisition directive or primary specification applicable to each area is con-

tained in parentheses beside each uncertainty.

Standardization and Interoperability (4120.3, 2010.6, 5000.37)

Quality Control (4155.1)

Manpower Numbers, Grades, Speciality, Skills (5000.39)

Support Cost (5000.39)

•Training Facilities (5000.39)

Simulator Designs (5000.39)

Crew Station Requirements (5000.39)

Reliability and Maintainability (5000.40)

Transportability (3224.1)

System Safety (5000.36)

Physical Security (3224.3)

Chemical Survivability

Nuclear Survivability

Test Hardware Availability (5000.3)

Test Hardware Applicability (5000.3)

Availability of Materials

Production Capability (Surge - 4005.11)

Affordability

Computer Resources (5000.29)

Interface Requirements (5010.19)

Data Communication (5010.19)

Software Development (5010.19)

Software Standardization (5010.19)

Software Documentation (5010.19)

Software Testing (5010.19)

Software Update (5010.19)

Data Management (4120.18)

Metric Units (4120.18)

Frequency Bands Allocation ( )

Energy Usage (4140.43)
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EnvironmentalImpact (6050.1)

SocioeconomicPrograms(1100.11)
C2 Systems

InterfaceChanges
C3 Approach

"Core" FunctionalRequirements

Warrantiesof Equipment
Survivability

RedundancyandJam Proofing
ServiceOperationalCapability
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APPENDIX B

CANDIDATE RISK AREAS

The following is a checklist of risk elements that may reflect program uncertainties.

PERFORMANCE RISK VARIABLES

State-of-the-Art Advance

Risks involving technology development beyond present capabilities. Also including risks

due to:

Complexity/difficulty in meeting requirement

Percent proven technology

Experience in the field needed

Lack of work on similar programs

Special resources needed

Operating environment

Required theoretical analysis

Degree difference from existing technology

Technical Risk Sources

Physical Properties

Dynamics
Stress

Thermal

Mass

Power

Vibration

Material Properties

Chemical

Pneumatics

Hydraulics

Atmospheric
Ionization
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RadiationProperties(emissionandreception)

EMI
Nuclear
Optical
Sound
Magnetic

Material Availability Risks

Sufficient quantity when needed?

Sufficient quality?

Alternate vendors needed?

Subcontractor/vendor stable?

Testing/Modeling Risks

Test facilities valid?

Modeling techniques valid?

Interpolation/extrapolation required?

Integration/Interface Risks

Adaptability

Compatibility

Controllability

Deployability

Detectability

Design tolerances

Interoperability (e.g., service branches, allies)

Quality Control

Safety

Security

Specifications

Standards

Survivability (chemical, nuclear hardness)

Transportability

Units

Vulnerability
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Program Personnel

Sufficient skill levels available?

Available when needed?

Clearance adequate?

Travel requirements understood?

Software Design Risks

Code estimates reasonable?

Language version defined?

Functional requirements complete?

Configuration control defined?

Test procedures complete?

Critical modules identified?

Hardware constraints defined?

Safety Risks

Testing hazardous to personnel?

Operation hazardous to personnel?

Security Risks

Security of system

Security of operating personnel

Security of support personnel

Detectability of communications

Critical Failure Modes

Reliability

Maintainability

Redundancy

Fault Detection

Fault Correction

Energy/Environmental Risks

Energy use high?

Environmental impact high?
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ScheduleRisk Variables

Sensitivity to technicalrisk

Sensitivity to cost risk

Dependenceon prior or concurrentresults

Availability of materials

Availability of personnel

Availability of test facilities
Turn aroundtime

Communicationdelays/errors
Uncontrollableevents

Strikes

Weather,etc.

Availability of productionfacilities

Changein requirements
Test failures

Cost Risk Varibles

Sensitivity to technicalrisk

Sensitivity to supportabilityrisk

Sensitivity to schedulerisk

Macro-Economicconditions(e.g., inflation, decreaseddemand)

Political/socialclimate (e.g., funding changes)

Regulatorychanges(e.g., new laws, regulationss)
Uncontrollableevents

Weather,etc.
Strikes

Overheadrates

G&A rates

Supportability Risk Variables

Manpower (customer/user)

Numbers

Rates

Specialities

Skill levels

Training
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Facilities
Maintenance

Simulators/Trainers

Crew stations

R&M

Transportability

Systemsafety

Quantity control
Productioncapability

Spares
Lead times

Availability of materials

Surgeproductioncapability

Environmentalimpact

Datamanagement
Formats

Access

Maintenance

Transferof responsibilities

Interoperabilitybetweenservices/allies
Alternate sources

Configurationmanagement

Requirementschanges
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APPENDIX C

TIME-COST TRADE-OFF ANALYSIS

Although not a risk assessment method, the critical path acceleration method is useful in es-

tablishing the relationship between schedule and resources (e.g., engineering manhours) in any

network. Such trade-off relationships may be used directly by the PM (or chief design engineer), or

may be used as an input to a risk analysis model.

The utility and limitations of the critical path method (CPM) in conjunction with project

planning are well-known. Experience in technology assessment and conceptual design projects at

Lockheed-Georgia showed that a major difficulty in planning was that start and end dates for a

specific technology development varied from project to project. Such variation is due to a combina-

tion of factors: (1) need dates are driven by the need date of the total system; (2) need dates are

interrelated with the availability dates of other technologies; (3) different projects require different

levels of technology advancement to meet requirements. In this environment, it is obvious that one

type of useful schedule information a risk analyst can provide is: (1) how much a development

schedule could be accelerated (technology limits); (2) which activities should be accelerated, and in

what order; (3) what would be the cost of each increment of time-savings.

The method for conducting such an analysis is known as "time-cost crashing: in OR litera-

ture and textbooks. Even though the size of the networks expected to be analyzed was not large

(10 to 20 activities), the frequency of conducting such analyses and the occasional "short-fuse"

application led us to develop an automated program. The computer code is called CPM/CRASH

and its input---output requirements are illustrated in Figure 23. The program logic is based on an

algorithm described in Tufekci (1982), "A Flow-Preserving Algorithm for the Time/Cost Trade-off

Problem."

CPM/CRASH works as follows. Inputs to the model are: (1) a network description of en-

abling activities; (2) a linear time-cost trade-off curve for each activity. CPM/CRASH systematical-

ly accelerates the development project, "crashing" the activity or activities on the current critical

path which gives the maximum time reduction per dollar. Crashing stops when a critical path is en-

countered in which all critical activities are at their maximum accelerated state. Zeleny (1982) has

pointed out that the project time-cost trade-off curve is an "efficiency boundary" in the terminology

of multicriteria decision making. Thus, the curve provided to the manager based on CPM/CRASH

is a trade-off curve between two conflicting objectives, minimize time and minimize cost. R&D

managers recognize the value of such information, being accustomed to trade-off curves for

performance-related variables.

The CPM/CRASH model depicted in Figure 23 was implemented in FORTRAN 77 on a

Univac 1100-series mainframe at Lockheed-Georgia. The model can evaluate a CPM network with

up to 149 activities and 99 nodes. The only labeling requirement on the nodes is that each

activity's tail node must be numbered less than the number assigned its head node. The only

analytic assumption, and one that must be emphasized, is that time to complete an activity is a

linear function of resources expended, within an intervgl runn!n_ l_om "normal _qsti_ to an extreme

"crashed cost." Implied in this assumption is that expenditures of resources above the crashed cost

have no effect on time to complete and hence would not be considered as rational.
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